Simultaneous Segmentation and Filtering via Reduced Graph Cuts

نویسندگان

  • Nicolas Lermé
  • François Malgouyres
چکیده

Recently, optimization with graph cuts became very attractive but generally remains limited to small-scale problems due to the large memory requirement of graphs, even when restricted to binary variables. Unlike previous heuristics which generally fail to fully capture details, [8] proposes another band-based method for reducing these graphs in image segmentation. This method provides small graphs while preserving thin structures but do not offer low memory usage when the amount of regularization is large. This is typically the case when images are corrupted by an impulsive noise. In this paper, we overcome this situation by embedding a new parameter in this method to both further reducing graphs and filtering the segmentation. This parameter avoids any post-processing steps, appears to be generally less sensitive to noise variations and offers a good robustness against noise. We also provide an empirical way to automatically tune this parameter and illustrate its behavior for segmenting grayscale and color images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

Iterated Graph Cuts for Image Segmentation

Graph cuts based interactive segmentation has become very popular over the last decade. In standard graph cuts, the extraction of foreground object in a complex background often leads to many segmentation errors and the parameter λ in the energy function is hard to select. In this paper, we propose an iterated graph cuts algorithm, which starts from the sub-graph that comprises the user labeled...

متن کامل

Graph cuts based left atrium segmentation refinement and right middle pulmonary vein extraction in C-arm CT

Automatic segmentation of the left atrium (LA) with the left atrial appendage (LAA) and the pulmonary vein (PV) trunks is important for intra-operative guidance in radio-frequency catheter ablation to treat atrial fibrillation (AF). Recently, we proposed a model-based method for LA segmentation from the C-arm CT images using marginal space learning (MSL). However, on some data, the mesh from th...

متن کامل

Image Segmentation by Graph Cuts via Energy Minimization

Multiregion graph cut image partitioning via kernel mapping is used to segment any type of the image data. The image data is transformed by a kernel function so that the piecewise constant model of the graph cut formulation becomes applicable. The objective function contains an original data term to evaluate the deviation of the transformed data within each segmentation region, from the piecewi...

متن کامل

Differential and Relaxed Image Foresting Transform for Graph-Cut Segmentation of Multiple 3D Objects

Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012